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Abstract

Street categorization is an important topic in urban planning and in var-
ious applications such as routing and environment monitoring. Typically
streets are classified as commercial, residential, and industrial. However,
such broad categorization is insufficient to capture the rich properties a street
may possess, and often cannot be used for specific applications. Previous
works have proposed several advanced street categorization systems. How-
ever, most of these systems rely on manual analysis and design, which requires
significant effort. In this paper, we propose a method for automatically dis-
covering latent street types from multi-modal Web open data. We utilize
data of different modalities including microblog tweets, Foursquare venues,
and Google Street View images. The model we propose considers both co-
herence within each modality and association between modalities. Based on
the San Francisco city data, our quantitative evaluation shows superiority of
the proposed method in terms of coherence and association. In qualitative
analysis, we show that the street types discovered by our method correspond
to the official street plan. We also show an example application in which the
discovered street types are used in crime prediction.
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1. Introduction

Street classification has been an important topic given quick urbaniza-
tion in recent years, and has attracted interests from city planners as well
as general public [1]. Understanding street types can be beneficial in many
applications. For example, it has been shown that improving public trans-
portation on a special type of street called activity corridors will increase
support for taller and denser housing [2]. It has also been shown that by
understanding the functionality and position of streets in the street network,
investment can be better guided to improve the living conditions of residents
[3]. There are also specific applications such as customized navigation for
fuel conservation [4] and noise monitoring and management [5]. Typically,
the street types are manually designed. The categorizing systems include
simple ones such as commercial, residential, and industrial streets [6], as well
as more complex ones, such as a two-dimension system based on Place and
Link [7]. To design such a categorizing system, researchers normally need
to look at a number of street examples and provide categories accordingly.
Manually designing street types, however, suffers some drawbacks. First, it
requires significant effort to examine street examples. Second, some street
aspects may still be overlooked by manual design. Third, manually designed
street types often lack generality, and may not be used in applications other
than the one considered in the design. Therefore, an automatic and unsuper-
vised way to generate street types that covers a wide range of street aspects
can be quite useful. These street types may not have been assigned a name,
but they would represent latent aspects of a street that can be used as inputs
in computational street analysis. In this article, we will investigate such a
task.

Given the emergence of Web open data, we now have various kinds of
geographical data at hand that can describe a street available online. The
prominent examples include Twitter tweets, Foursquare, and Google Street
View (GSV) images. Twitter is a micro-blogging platform that allows users
to share short messages up to 140 characters. Commonly called tweets,
these messages can include a wide range of topics about personal lives, news,
opinions, and may also explicitly or implicitly reflect the character of loca-
tions they are sent from [8, 9]. Foursquare is a location-based online service
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that serves as a business directory as well as an activity record platform.
Foursquare venues are a popular descriptor of streets, and have often been
used for pedestrian behavior analysis [10, 11]. Finally, GSV images are 360-
degree panorama street images captured mostly using cameras installed on
cars. They are good representations of street outlooks. Previous works have
used them for street-based studies such as street perception analysis [12]. In
our prior works, we have studied street attributes such as visual and facility
diversities, pleasantness, and language densities using GSV images, tweets,
and Foursquare venues [13, 14, 15]. We have shown that these data sources
are very useful in discovering certain street aspects. However, these aspects
have been all defined manually in the previous works. In this paper, we pro-
pose a method to automatically discover latent street types using descriptive
Web open data. Our method does not rely on manual design, and can be ap-
plied easily in any cities where the data such as the one described above are
available. To the best of our knowledge, this is the first work that proposes
to use a computational data mining method to discover latent street types.

Our method follows the approach of topic modeling in text analysis, par-
ticularly Latent Dirichlet Allocation (LDA) [16]. LDA is a hierarchical prob-
abilistic model that describes dependencies between documents and topics,
as well as ones between topics and words. The model can be learned in an
unsupervised fashion, and one of the learned parameters called document-
topic distribution can be seen as the latent topics of documents. If we see
streets and their descriptive data as documents, and types as latent topics,
it will be easy to adopt LDA for our purpose. However, the original LDA
does not support very well multi-modal data, especially when the vocabulary
sizes of different modalities differ significantly. Consequently, we propose to
extend LDA to consider multi-modal data.

To summarize, our main contributions with this paper include:

• We propose a novel task of using computational methods to automat-
ically discover latent street types. This is one of the earliest work that
deals with this problem. We also exploit Web open data that ensures
practical applicability of our approach.

• We make a novel extension to LDA to consider multi-modal data. Our
extension supports independence of different modalities, and is thus
expected to produce high coherence and better latent type distribu-
tion, especially when the vocabulary sizes of different modalities differ
significantly.
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• We run extensive quantitative evaluation and qualitative analysis to
test our method. With an example target city of San Francisco, we
show that our approach can detect meaningful street types and our
extension to LDA further improves the results.

• We show how the street types discovered by our approach can be used
in an application scenario, namely, crime prediction. The experimental
results show that the prediction with discovered street types outper-
forms traditional prediction signals such as demographic features.

The remainder of the paper is organized as the following: in Section 2,
we will review related literature. In Section 3, we will present the details of
our method for discovering topics from multi-modal data. The quantitative
evaluation and qualitative analysis of the results will be presented in Section
4. In Section 5, we will show how discovered latent street types can be used
in a practical application, namely, crime prediction. Finally, Section 6 will
offer some concluding remarks.

2. Related Work

Several researches have showed the importance of identifying street types
in urban planning. McLeod and Curtis study the impact of public trans-
port improvement for a specific street type, called activity corridor, which
is defined by land use [2]. The results of their research suggest that invest-
ments in public transport infrastructure along potential activity corridors are
likely to result in increased support for taller or denser housing, especially for
residents living within existing greyfields. Buhrgard compares the so-called
boulevardisation in Stockholm and Helsinki, based on conditions of streets
of similar types present in the two cities [17]. Since Helsinki has recorded
successes in converting expressways to urban boulevards, identifying simi-
lar roads in Stockholm is beneficial as it allows city planner to borrow the
experiences from the former city.

Given the importance of identifying street types, a number of researches
attempt to systematically classify street types, with the well-known example
being residential, commercial, and industry streets. Jones et al. propose a
two-dimension street categorization based on Link and Place properties of
the street, considering a street as both a connection for movement, and a
destination in its own right [3]. This results in types such as urban cen-
ter, urban retail, or suburban residential. Wu on other hand, introduces
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a three-dimension street categorization, based on the hierarchy, land use,
and position of the street [6]. By land use, the categories include mixed-use
street, traffic road, commercial street, residential street, industrial street,
the historical landmark protection streets. Targeting a more specific appli-
cation, Moraes et al. propose a street categorization with regard to urban
thermoacoustic analysis [5]. The categories are established by considering
temperature, traffic, and building heights. Most of current work on street
categorization, however, rely on manual design. In this paper, we make a
novel contribution by discovering street types automatically from large-scale
geographical Web data.

There is little existing work that proposes automatic computational meth-
ods for discovering latent street types from geographical open data. There
are instead a number of works that aim at discovering latent geographical
attributes for urban areas, though with different geographical units. For ex-
ample, Graells-Garrido et al. propose to discover travel patterns in a city
from mobile phone network data [18]. They use non-negative matrix factor-
ization to approximate lower rank attribute tables for users and regions, and
thus indirectly discover latent geographical attributes. This technique is sim-
ilarly studied in text document clustering [19]. The travel patterns, however,
are scarce, and difficult to use in street-level attribute inference. Vaca et al.
propose to use Foursquare data to discover functional areas in a city [20].
They divide a city into grids and run a clustering algorithm to find areas
with similar functions. Their assumption that adjacent areas tend to have
similar functions, however, would miss many real-world cases. For example,
instead of conforming to one type, many residential areas in US cities have
commercial streets run through them. Celikten et al. similarly propose using
Foursquare check-in data to discover region functions [21]. Their probabilis-
tic model considers both spatial and temporal aspects of user behavior, and
can be used to match similar regions across different cities. Again, their lim-
itation is the assumption of similarity between geographically close regions,
and their method is difficult to be applied to street-level analysis. Zambrano
et al. propose to cluster resident activities from tweets and Foursquare data,
where tweets are annotated by the closest Foursquare venue [22]. Their clus-
tering method can discover activity clusters, such as “Film” and “Stadium”
during a film festival and league matches. One of the limitations of their
work is to rely on pre-defined Foursquare categories, and thus the method is
unable to uncover other latent attributes not defined by Foursquare, such as
an attribute that distinguishes roads for pedestrians and motor vehicles. We
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can also view latent type discovery as a task of learning a distributed repre-
sentation of documents or streets. Shoji et al. follow a distribution learning
approach and propose location2vec, which generates semantic representation
of locations from geo-tagged tweets [23]. Apart from the restriction imposed
by only using tweets, the limitation, however, is that with this approach, it
will become difficult to analyze features and interpret the meaning of discov-
ered topics.

Our method follows closely topic modeling in text analysis. Latent Dirich-
let Allocation (LDA) is a well-known technique for discovering latent topics
or themes in text documents [16]. It is a graphical Bayesian model based on
the probability dependencies between documents and topics, and topics and
words. An advantage of this model is that the topic of a document is defined
as a distribution instead of a fixed category, which is commonly presented in
previous works [24]. Another advantage is that after learning the model, the
top words of each topic can be extracted and analyzed. The original LDA pa-
per uses a variational inference to learn the model parameters [16]. However,
it is found that approximation techniques such as collapsed Gibbs sampling
can learn the model faster and more accurately [25]. Fast algorithms such
as the one proposed by Porteous et al. can quickly learn the parameters by
counting the frequency of words appearing in documents and topics. A limi-
tation of LDA is that it provides limited support for multi-modal data. Some
works have extended LDA to more than one modalities. For example, Blei
et al. propose to extend LDA for discovering association between text and
images [26]. They add to the LDA model a dependency from images to text
annotations. LDA is also used by Habibian et al. to extract text descriptions
from video sequences [40]. In their work, text embeddings are first learned
through LDA, and then used for annotating images. Andrews et al. propose
a multi-modal LDA that incorporates two data types, namely, experiential
and distributional data [27]. Based on this work, Roller et al. propose to
integrate textual, cognitive, and visual modalities with LDA [28]. However,
their model is learned through pairwise associations, as with the majority
of existing works. In contrast to these approaches, our method considers all
modalities together at the same time. Our novel extension to LDA considers
both within-document coherence, and independence of modalities.
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3. Discovering Latent Street Types from Web Open Data

Our method for discovering latent street types is based on topic modeling
in text analysis. More specifically, we extend LDA to incorporate multi-
modal data. Originally LDA is designed to run with bag-of-words (BOW)
representation of text data. Our data, on the other hand, contains images
and categorical data, and thus need transformation. In this section, we first
present our data pre-processing step that converts image and categorical data
into BOW data. Then we briefly review LDA framework and discuss how
it can be applied in our study. Last we present our extension to LDA that
incorporates multi-modal data.

3.1. Data Pre-processing

The geographical Web open data used in this study include Twitter short
messages called tweets, Foursquare venue categories, and GSV images. Fol-
lowing the latent topic modeling approaches used in text analysis and doc-
ument retrieval, we consider data bound to a street as a document, and
the latent types as topics. Consequently, street types and topics will be
used interchangeably in the rest of this article. Since all three considered
data sources have geo-coordinate information, it is trivial to assign them to
streets. We will discuss data collection and assignment to streets in a case
study presented in Section 5.

Assuming that data have been assigned to streets, we then convert data
into BOW representation that is suitable for processing with LDA. Specif-
ically, we need to extract words from data. For tweets and venues, the
conversion is straightforward. Tweets are text documents that can be easily
tokenized into words. The category of each Foursquare venue can be consid-
ered as a word drawn from the list of venue categories. For GSV images, we
convert them to words following a common practice for image analysis [29].
First we convert them into a vector using a pre-trained deep neural network
built for recognizing objects in images. Inception [30] is an example of such
network that we use. The latest version of this network, Inception-v3, has
42 deep layers, including convolution and fully connected layers. In the ex-
perimental evaluation for object classification, Inception-v3 reached a top-5
error rate of 3.46%, compared to 15.3% reached by AlexNet, and 6.67% by
the original Inception network. Inception takes images of any size as the in-
put, although our GSV images are JPEG images of the size 1920×640 pixels.
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Figure 1: Graphical model for LDA

We add short code to the Inception program1 for extracting the output of the
third pooling layer, which is a vector of 2,048 dimensions representing the
semantics of the input image. Each dimension represents strength of certain
semantic aspects of the image. We then set a threshold δ, such that values
larger than δ and smaller than −δ in the vector are picked to be the words of
the image. As the result, each street is now described by a number of words
from three modalities.

3.2. Latent Street Type Discovery Based on Topic Model

LDA is a widely used technique for discovering latent topics in text doc-
uments [16]. LDA uses two multinomial distributions, namely, θ and φ, to
represent the distribution of topics in a document, and the distribution of
words in a topic. Both distributions are assumed to be generated from Dirich-
let distribution, controlled by hyper parameters α and β, which are non-zero
numbers. The observation w, which are the words appearing in documents,
is generated from θ and φ, using two steps. First, a topic znm indicating the
topic of n-th word in document m is selected using θ. Then, based on z and
φ, a word is selected. This generative process is depicted in Figure 1.

While direct calculation of the two distributions from the conditional
probability p(w|θ, φ) are intractable, approximation techniques such as Gibbs-

1https://www.tensorflow.org/tutorials/image recognition
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sampling have been developed for LDA. Particularly, a fast collapsed Gibbs
sampling algorithm is commonly used to efficiently learn LDA models [31].
Through this technique, θ and φ are marginalized out, and z becomes the
only parameter to be learned, which can be done by counting words. More
specifically, let us denote the count of word w in document m and topic k as
Cwkm, and Ckm =

∑
w Cwkm, Cwk =

∑
mCwkm. In other words, Ckm is count

of words assigned to topic k in document m, and Cwk is the count of word w
assigned to topic k in all documents. Using Gibbs sampling, in each learning
iteration:

p(znm = k|z¬nm,w, α, β) = akmbwk (1)

where

akm =
C¬nmkm + α

C¬nmm +Kα
bwk =

C¬nmwk + β

C¬nmk +Wβ

and C¬nm means the count excluding the n-th word in document m. After
obtaining p(znm = k) for all k ∈ K, a value is sampled from this distribution
and assigned to znm.

In the case of L-modal data where a document consists of L parts of
words, a straightforward solution of applying LDA is to combine all L parts
together. More specifically, if Vl is the vocabulary size of modality l, we make
combined dictionary with size V =

∑
l Vl. Consequently, each document now

has N =
∑

lNl words, where Nl is the number of words in the document for
modality l. The distinction of modality is invisible in this solution, which we
call combined LDA (cLDA).

While being simple, this approach has some drawbacks. An immediate
problem is that modality of different vocabulary sizes will have imbalanced in-
fluence on the result. As we will show in the case study in Section 4, we often
have tweets with vocabulary of thousands of words and Foursquare venues of
hundreds of categories. Since they are combined together indifferently, and
each update of parameter is taking into account all other parameters, the
modality of larger vocabulary size will have more chance to be trained. In
other words, modality of different sizes will have different influence on the
topic-word distribution φ. To mitigate this problem, we propose Weighted
Multi-modal LDA (WM-LDA), which we now describe.

3.3. Weighted Multi-modal LDA

One way to deal with the imbalanced influence from different modalities
is to use a separate word-topic distribution for each of the modality. This
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Figure 2: Graphical model for WM-LDA

concept is illustrated in Figure 2. In this graphical model, we have a φ for
each of L modalities, and the counting of words is also based on modalities
instead of the whole document. A problem of this solution is that there is
no interaction between modalities. Even though each modality is trained by
itself, and may have a higher coherence, the topics they represent may not
associate to each other. To tackle this problem we propose weighted multi-
modal LDA (WM-LDA) that considers both the individuality of modalities,
as well as the interaction among them.

One way to interpret the factors a and b for determining p(znm), shown
in Equation (1), is to consider a as the influence of document coherence, and
b as the vocabulary consistency across different topics. With an additional
weighting parameter λ, WM-LDA uses an alternative calculation of a and b
so that a conveys the coherence of the entire document, and b conveys vocab-
ulary consistency of individual modality. More specifically, let us similarly
define Cwklm as the count of word w in topic k, modality l in document m.
We extend p(znm) in Equation (1) as p(znlm), where l ∈ L is the current
modality, and calculate aklm and bwlk as:

aklm =
∑
l

λl
C¬nlmklm + α

C¬nlmlm +Kα
bwlk =

C¬nlmwlk + β

C¬nlmlk +Wlβ
(2)

where Wl is the vocabulary size of modality l. Given this formula, the in-
teraction between modalities is thus achieved by computing a considering all
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modalities, which then defines each p(znlm). Here λl controls the influence
of each modality on the distribution. Normally we set the same value for all
λl, l ∈ L, unless we have prior knowledge of which modality is more impor-
tant. Having the same λl for all modalities will give a balanced influence to
each modality, thus mitigating the problem stated in the previous section.
Algorithm 1 shows a fast procedure for updating znlm. Note that we pre-
compute pklm, components of aklm, when starting to proceed document m
and modality l (line 3), and avoid calculating them in the inner-most loop of
the algorithm, which can significantly reduce the computation time.

Algorithm 1 Updating z with WM-LDA

1: for each document m, modality l do
2: for each topic k do

3: pklm ← λl
C¬nlm

klm +α

C¬nlm
lm +Kα

4: end for
5: for each znlm of n-th word do
6: remove znlm from counters
7: for each topic k do
8: calculate aklm using Equation (2) and pklm
9: calculate bwlk using Equation (2)

10: p(znlm = k)← aklmbwlk
11: sample znlm ∼ p(znlm)
12: end for
13: end for
14: end for

Based on z, the document-topic distribution θ and topic-word distribution
φ are obtained with the following:

θkm =
∑
l

λl
Cklm + α

Clm +Kα
φlwk =

Cwlk + β

Clk +Wlβ

Top words of each modality that are most likely to appear in a topic can
thus be obtained by ranking φ values.
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4. A Case Study: San Francisco

In the remaining studies, we will use San Francisco as our target. San
Francisco is one of the largest cities in the US2, with well-known regions such
as Financial District, Union Square, and Fisherman’s Wharf. We choose San
Francisco because of the diverse street types it contains. It is also highly
popular among tourists for whom street-level information can be very useful.

4.1. Data Collection

We first identify street segments in San Francisco using OSM data. OSM
contained over 4 billion nodes over the world, where each node represents a
geographical point of interest (POI)3. A street segment is defined in OSM as a
series of points (particularly, it can have a high number of points if the street
segment is not straight). OSM also provides the starting coordinates, ending
coordinates, length and the name of the street that the segment belongs to.
We collect all street segments and their data in San Francisco city using OSM
public API4. In total, the collected data contains 252,537 street segments. We
then define the distance between a geographical point and a street segment
as the shortest distance between the point and the segment. If the segment
is straight, the distance is the length of the perpendicular line from the point
to the segment. We use the QGIS software5 to perform this calculation. This
measurement of distance is our basis for assigning geographical data to street
segments.

Tweets are collected by monitoring live stream using Twitter Filter API6

from May 2016 to April 2017, resulting in 751,628 geo-tagged tweets. We then
collect Foursquare data using Venue Search API7. We gather information for
41,515 venues in SF. Tweets and venues are then assigned to streets that
are within 20 meters from them. Multiple streets can be assigned to one
data point. We collect GSV images using Google Street View Image API8

2https://www.census.gov/quickfacts/fact/table/sanfranciscocountycalifornia,US/
3https://wiki.openstreetmap.org/wiki/Stats
4https://wiki.openstreetmap.org/wiki/API
5https://www.qgis.org/en/site/
6https://developer.twitter.com/en/docs/tweets/filter-realtime/overview
7https://developer.foursquare.com/docs/venues/search
8https://developers.google.com/maps/documentation/streetview/
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within the specified bounding box covering the San Francisco city9. A total
of 98,874 panorama view images are collected. We then assign an image to
a street segment if it is within 10 meters from the segment. An image can
be assigned to multiple street segments.

The tweets, Foursquare venues, and GSV images are then converted to
BOW representations following the method discussed in Section 3.1. The
vocabulary sizes of these three modalities are 8,755, 528, and 1,237, respec-
tively. Note that in order to preserve meaningful representation, we only keep
street segments that contain at least three words in each of the modalities in
our dataset.

4.2. Baseline Methods

In the following experiments, we compare our WM-LDA model with two
baselines. The first is combined LDA (cLDA), which has been described in
Section 3.2. For this baseline, the content of three modalities are concate-
nated into one document, before applying the standard LDA.

The second baseline is the method proposed by Roller and Im Walde [28],
called 3D-LDA. This method is an extension to the mLDA, which allows the
addition of a second modality to the standard LDA model [27]. Similarly,
3D-LDA allows two additional modalities, provided that the associations
between the primary and additional modalities are established. Roller and
Walde use manual annotation to create association between two modalities,
for example, a word and a visual clue. In this paper, we create association
between modalities based on the co-occurrence of the words. Using tweet
words as the primary modality, we calculate the term frequency - inverse
document frequency (TFIDF) score of Foursquare venues and GSV image
words. More specifically, for each word w we select street segments S that
contain w, and the score of a venue v is calculated as

TFIDF(v, S) = tf(v, S) · log
|D|

|{d ∈ D : v ∈ d}|

where tf(v, S) is the number of times v appears in S, and D is the set of
all street segments. In this way, the venue more likely to appear together
with the word will have a high score. We calculated the TFIDF scores for

9the bounding box is defined by a pair of coordinates (-122.523057, 37.813163) and
(-122.354814, 37.708275)
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all venues, and the venue that has the highest score will be associated with
the word w. We create association between words and GSV image words the
same way. After establishing the associations, we can now run the 3D-LDA
using tweet words as the primary modality. We use the implementation made
available by the author. Running 3D-LDA will generate the document-topic
distribution theta and three φs for three modalities,.

4.3. Quantitative Evaluation

We use automatic methods to quantitatively evaluate the quality of dis-
covered topics. Specifically, we measure the coherence of topic words, and
the association between different modalities. In recent years it has been a
common practice to evaluate topic models through a reference source [33, 34].
For example, Newman et al. propose to measure topic coherence based on
the position of words in WordNet, a linked dictionary of English words [33].
In this paper, we use a reference source called GloVe, which recently has
shown considerable impact in text analysis [35]. GloVe is an algorithm for
learning distributed representations of words. The authors have released sev-
eral versions of pre-trained word representations online10, and we use the one
trained on two billion tweets that contains 1.2 million words, each of which
is represented as a vector indicating semantics of the word in a latent dimen-
sion. Words with similar meaning or context (e.g., coffee and tea) will be
represented as similar vectors.

To measure the coherence of a modality of a topic, we calculate the aver-
age pairwise cosine similarity of top T words for each topic. In other words,
the coherence of top T words w of a modality is calculated as:

coherence(w) =
1

T (T − 1)/2

T−1∑
i=1

T∑
j=i+1

cosSim(wi, wj)

Normally we set T = 10. The coherence of a model is subsequently
calculated as the mean coherence of all topics. This is straightforward for
tweet data. For Foursquare venues data, we can use the venue name as
words matched in GloVe, but there are some cases where venue names are
composed of multiple words (e.g., seafood restaurant. In such cases, we use
the last word in the venue name, which in general defines the function and

10https://nlp.stanford.edu/projects/glove/
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Figure 3: Quantitative evaluation results for latent street type discovery

meaning of the venue. For GSV image words, however, we could not find a
reference source, and will leave it for future work.

To measure the association between modalities, we again exploit GloVe-
based similarity, which is available only for tweets and Foursquare venues.
Thus to calculate the association between tweets and venues, for each topic,
we first take a word from tweets, and find the most similar venue, and use it
as the association of this word to venues. In other words, the association of
a tweet word to venues v is calculated as:

assoc(w,v) = arg max
i

cosSim(w, vi)

The association of tweets and venues of this topic is then calculated as the
average association of top T tweet words to venues. The association between
tweets and venues of a model is thus the average association of all topics.

Based on the data collected, we run experiments to quantitatively eval-
uate latent street types discovered by different models. We tested different
numbers of topics, K = {2, 5, 10, 20, 50, 100}. For each evaluation, we run
the experiment ten times, and take the average coherence and association
results. Figure 3 shows the evaluation results. In addition to cLDA and
3D-LDA, we also evaluate a random baseline, which randomly generates the
topic-word distribution φ. The random method achieves a low tweet coher-
ence because tweet words are of a wide range of semantics. But for venue
coherence, the random method performs relatively well, because most venue
words are related to locations or businesses.

Comparing WM-LDA with cLDA and 3D-LDA, we can see that WM-
LDA tends to provide more coherent topics in terms of tweet words and
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venues, in most cases. Particularly for venues, even though the room to
improve is smaller, considering the high coherence achieved by the random
method, WM-LDA still has a large improvement over cLDA. The reason
seems to be that for cLDA, the venue dictionary is much smaller than tweet
word dictionary, and according to the imbalanced influence we explained,
venues in cLDA could not be properly learned. However, by using the same
weighting in WM-LDA, venues can be learned equally well as the tweets, thus
achieving much higher coherence. At the same time, tweet words in WM-
LDA also achieve better coherence than cLDA, albeit smaller improvement,
because they are excluded from the influence of other modalities. In regards
to the association, we can see that WM-LDA achieves about the same level of
association as cLDA, and in some cases higher, especially when K is larger.
3D-LDA performs similar to cLDA, except for venue coherence with higher
K, for which it achieves better results. This is perhaps because of the way
the tweet words are mapped to venues, which makes more popular venues
to appear more frequently in the model, resulting in a smaller vocabulary,
and consequently higher coherence. But this also causes association between
tweet words and venues to weaken, and as we can see, it achieves lower
association results with higher K.

4.4. Qualitative Analysis

In this section, we try to examine the quality of discovered latent street
types through manual analysis. We first compare discovered street types
with an official street plan. Then we check a number of typical streets by
searching relevant information on the Web.

4.4.1. Comparison with Street Plan

In this qualitative analysis, we compare the street plan of San Francisco
with the discovered street types. We obtain the official street plan from SF
Better Streets website11. Shown in Figure 4 (a), this street plan map is
defined by land use context and transportation characteristics, and contains
street types like neighborhood commercial streets (purple), neighborhood
residential streets (yellow), and park edges (dark green)12.

Although we do not have the street-by-street labels used for producing
this map in order to run a quantitative analysis, we can nevertheless compare

11https://www.sfbetterstreets.org/design-guidelines/street-types/
12Full color codes can be viewed on the above website
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(a) Street Plan (b) WM-LDA Street Types K=3

(c) cLDA residential (d) cLDA commercial (e) 3D-LDA residential

(f) 3D-LDA commercial (g) WM-LDA residential (h) WM-LDA commercial

Figure 4: Comparison of the street plan with discovered street types
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our results with this map visually. By comparing with this plan map, we can
see whether automatically discovered types capture types defined in realis-
tic street plan. For this study, we set K=3 for all models. The discovered
street types using WM-LDA is shown in Figure 4 (b), from which we can see
roughly residential streets, commercial streets, and highways, corresponding
to color, green, blue, and red, respectively. In Figure 4 (c) to (h), we sep-
arate the residential streets and commercial streets discovered by different
models. Compared to the commercial streets defined in the plan, which are
concentrated in the east and northeast corner, colored in purple and light
blue, we can see from (h) that WM-LDA capture more fully the commercial
areas. In (d) and (f), we can see cLDA and 3D-LDA are not very capable
of capturing the commercial area, and they sometimes mix commercial with
highways. In (c) and (e) we also see that these two models assigned most of
the streets as the residential streets, showing their weakness in distinguishing
different types of streets. On the other hand, in (b), (g), and (h), we see a
much clearer separation between residential streets and commercial streets,
produced by WM-LDA.

Please be reminded that here we set K = 3 so that it is easy to compare
with street plan. However, the latent topic models are more powerful when
K is set to a higher number, with which detailed streets types that are
overlooked in street plans can be represented.

4.4.2. Cardinal Type Streets

In this qualitative analysis, we would like to find out if our method pro-
duce coherent street types through examples. We first pick some typical
streets from the results. We determine if a street is typical of a type based
on entropy [32]. Recall that the parameter θ is the document-topic distribu-
tion that shows probability of a street belonging to each type. The entropy is
calculated as −

∑
i Pi logPi. We calculate the entropy for each street, and the

lower the entropy, the more the street is considered pure of a type. We run
WM-LDA with k = 50 to generate θ. From the low entropy streets we pick
two streets that have different cardinal types for qualitative analysis. The
top tweets, venues, and images for the type the street is associated with are
shown in Table 1. The images are picked so that they have the highest sum
for the top image words. We also compare these data with the information
we found in search engines about the street.

The first street is a special cultural street with restaurants and shops
reflecting a specific culture group. Identified as Japantown by search engines,
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Typical Street 1 Typical Street 2
Japantown, a Japanese-themed street Civic Center, surrounded by public facilities
Tweets: Ramen, Sushi, Regency, Ball-
room, ramen, sushi, Hinodeya, Legend,
Madrone, Ink

Tweets: Center/UN, lol, Mr., Jewish,
Contemporary, break, Lunch, Bakehouse,
Holmes, shift

Venue: Sushi Restaurant, Japanese
Restaurant, Korean Restaurant, Gen-
eral Entertainment, Ramen Restaurant,
Karaoke Bar, Spa, Gift Shop, Hardware
Store, Chiropractor

Venue: Government Building, Bike Rental
/ Bike Share, Intersection, Gym / Fitness
Center, General Travel, Convenience Store,
General College & University, Sushi Restau-
rant, Fast Food Restaurant, Bike Shop

Table 1: Detected Typical Streets

we can see that the associated tweets and venues reflect this information, with
both referring to Japanese food. The image also shows a residential-business
area with Asian food outlets and grocery stores. The second street contains
a government facilities, and we see this is reflected in tweets and venues. The
images show an official building in a less commercialized area.While there are
more potential analyses can be done, for now we conclude that our method
is able to discover typical coherent streets.

5. Application: Crime Prediction with Latent Street Types

The discovered latent types can be considered as a novel vector represen-
tation of a street, and can thus be useful in many applications of computa-
tional street analysis, from customized routing to housing price estimation.
In this section, we study one of such applications, namely, street crime pre-
diction. Crime is a critical social phenomenon, and crime prediction is an
important research topic beneficial for both government and residents [36]. In
existing literature, crime is often associated with demographic data, such as
income, education level, and employment rate [37]. While largely overlooked
in existing literature, it is recognized that street outlooks can have an acute
influence on crime rate, which leads to theories such as “broken window”
[38]. In this study, we will show that the latent street types discovered from
street outlook images, venue categories, and conversations, can be effectively
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used in predicting crime.

5.1. Data and Evaluation Setup

We still use San Francisco as our target city. In addition to the descriptive
Web data, we also collect crime data for training and testing prediction
models. Particularly, we collect data on assault and burglary, the two most
common offenses against person and property, from the “Police Department
Incidents Data Set”13 provided by DataSF14. Unlike speeding or domestic
violence, these crimes are considered highly related to the characteristics of
the street. The dataset dates range from Jan 1, 2003 to Jun 25, 2017. We
assign the crimes to streets in the similar way as was with the other data. For
the valid streets, there are a total of 36,741 assaults and 21,335 burglaries.
The distribution statistics about crimes per edge are shown in Table 2.

Table 2: Distributions of the crimes per edge

min median mean max
assault 0 10 14.4 131

burglary 0 6 8.3 73

We compare latent street types discovered by cLDA, 3D-LDA, and WM-
LDA. For all models, we set four K values, 5, 10, 20, and 50. Accordingly,
the latent type vectors obtained from θ to represent streets are of 5, 10, 20,
and 50 dimensions. We also compare latent street types against demographic
features, the common predictor in existing literature. We use demographic
features proposed in [39], which include the following demographic features
effective for crime prediction: total population, population density, poverty,
disadvantage index, residential stability, ethnic diversity, race distribution.
We obtain these demographic information from a government website15, and
assign them to streets. Furthermore, we consider the prediction made by
a spatial aggregation method, called kNN (k nearest neighbors). This pre-
diction does not involved demographic or any other features, and the crime
number in one street is predicted as the average of crime numbers in nearest
k streets. We set k = 3 as it generally produce good predictions.

13https://catalog.data.gov/dataset/sfpd-incidents-from-1-january-2014
14https://datasf.org/opendata/
15https://www.census.gov/
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We use 10-fold cross validation, which takes 90 percent data for training
and 10 percent data for testing. We use Support Vector Regression (SVR)
as our learning model. We use the SVR implemented in the e1071 R pack-
age16, and use default parameters and the radial kernel. We also consider
neural network models. However, it has been previously shown that simple
neural networks with fully connected layers do not perform as well as SVR,
and designing an advanced neural network is beyond the scope of this pa-
per. After training the model, we compare prediction and testing data and
measure Root Mean Square Error (RMSE) and Spearman Rank Correlation,
two common metrics for measuring prediction accuracy. RMSE measures
the accuracy on the absolute crime number. Rank Correlation measures the
ranking similarity of the prediction and actual crime number, which is useful
when the relative crime rate is important.

5.2. Evaluation Results

The experimental evaluation results are shown in Table 3. We can see
from the results that for both assault and burglary, WM-LDA with K=50
achieves the lowest error compared with other approaches, especially com-
pared to demographic features It means that the proposed WM-LDA street
types can be used to effectively represent streets, better than demographic
features. On the other hand, cLDA and 3D-LDA are unable to achieve better
results than demographic features for assault. For burglary they are better,
perhaps due to burglary being more associated to street types than assault.
WM-LDA nevertheless achieves better results than cLDA and 3D-LDA in all
the tests. The spatial model kNN, though generates larger errors than other
methods, produces better rank correlations, most likely due to the spatial
correlation of crimes.

We are also interested to know whether WM-LDA street types comple-
ment the demographic features and the spatial model, and can improve the
results they achieve. Table 4 shows the accuracy results of combining demo-
graphic features, kNN predictions and WM-LDA street types for prediction.
Comparing with Table 3, we can see that the combined features achieve bet-
ter results than using kNN prediction or demographic features individually.
We thus conclude that WM-LDA street types can be used as complement
to the spatial model and demographic features in prediction tasks, although

16https://cran.r-project.org/web/packages/e1071/index.html
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assault burglary
RMSE Rank Corr RMSE Rank Corr

kNN 16.280 0.348 9.931 0.255
demographic 15.941 0.234 9.238 0.110
cLDA K=5 16.207 0.142 9.245 0.117
cLDA K=10 16.182 0.162 9.273 0.131
cLDA K=20 16.228 0.155 9.249 0.144
cLDA K=50 15.960 0.206 9.149 0.184
3D-LDA K=5 16.251 0.122 9.215 0.123
3D-LDA K=10 16.070 0.156 9.258 0.111
3D-LDA K=20 16.165 0.156 9.321 0.075
3D-LDA K=50 15.877 0.205 9.177 0.137
WMLDA K=5 16.007 0.210 9.261 0.131
WMLDA K=10 16.055 0.201 9.224 0.148
WMLDA K=20 15.754 0.262 9.150 0.192
WMLDA K=50 15.628 0.256 9.115 0.179

Table 3: Prediction accuracy comparison of kNN, demographic features and latent street
types

we cannot claim that increasing the number of types can always bring better
prediction.

assault buglary
RMSE Rank Corr RMSE Rank Corr

kNN + demo. + WMLDA K=5 15.054 0.365 9.030 0.220
kNN + demo. + WMLDA K=10 15.253 0.334 8.918 0.274
kNN + demo. + WMLDA K=20 14.899 0.379 8.899 0.265
kNN + demo. + WMLDA K=50 14.797 0.369 8.934 0.255

Table 4: Prediction accuracy of combining kNN predictions, demographic features and
latent street types discovered by WMLDA

6. Conclusion

In this paper, we tackle the problem of automatically discovering latent
street types using Web open data. Our learning method extends LDA with
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multi-modal capacities. We run experiments to test the method using real-
world data of San Francisco. In quantitative evaluation, we show that types
discovered by our method are superior in terms of coherence and association
between modalities. In qualitative analysis, we show that the discovered
street types correspond closely to the types defined in the street plan. One
reason that our modified version of LDA performs better than the original
version is that modalities are considered separately before they are combined,
and thus discovered street types are better representations taking information
equally from all modalities. We also demonstrate an example application of
crime prediction that can be improved by incorporating detected latent street
types.

We need to note that our approach has some limitations. First, learning
the model is an iterative process that requires time, making it unsuitable as
an online method. Second, this approach cannot be used for streets with
little or no data. Finally, even though we can make rough guesses through
the top topic words and visualizations, confidently claiming the meaning
of a discovered street type still needs human effort, ideally from domain
experts. Nevertheless, our method of discovering latent street types can lead
to many interesting street-based studies in the future. We plan to investigate
the impact of discovered street types in more applications such as pedestrian
flow prediction and land price estimation. We are also interested in designing
an online algorithm for learning the model that can be used in a real-time
routing system.
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